Analytical Chemistry

Associate professor Mohamed Frahat Foda

Email: m.frahat@fagr.bu.edu.eg
Website:
https://www.bu.edu.eg/staff/mfrahat6

Acid-Base Reactions

$\mathrm{H}_{3} \mathrm{O}^{+}=$hydronium ion

Neutralization Reactions

$$
\begin{aligned}
& \text { Acid + Base } \rightarrow \\
& \text { Salt + Water }
\end{aligned}
$$

$\mathrm{Ex}: \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathbf{H O H}$

Acid-Base Reactions

A very common type of double displacement reaction involves the neutralization of an acid with a base.

Arrhenius and Bronsted-Lowry Definitions

There are several "definitions" of acids or bases, from a chemical standpoint.

The two most important definitions are those given by Svante Arrhenius in the late 19th century, and by J.N. Bronsted and Thomas Lowry, who independently developed similar chemical descriptions of acids and bases in the 20th century.

An Arrhenius base is a substance that dissociates to produce OH^{-}ions in water

$$
\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

i.e., Arrhenius bases are metal hydroxides that are soluble in water.

An Arrhenius acid is a substance that ionizes to produce H^{+}ions in water

$$
\mathrm{HCl}(g) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Acids and Bases

An H^{+}ion is essentially a bare proton - this is an extremely reactive species!
H^{+}ions will instantly bond to a water molecule to form the polyatomic cation, $\mathrm{H}_{3} \mathrm{O}^{+}$, called the "hydronium ion."

So, actually, an Arrhenius acid is a substance that produces $\mathrm{H}_{3} \mathrm{O}^{+}$ions in water.

Bronsted-Lowry made use of the fact that H^{+}ions are essentially just a proton in their definition of acids and bases:

A Bronsted-Lowry acid is a proton $\left(\mathrm{H}^{+}\right)$donor A Bronsted-Lowry base is a proton $\left(\mathrm{H}^{+}\right)$acceptor

B-L acid and base is a somewhat more "general" definition, since it does not require the presence of water as a solvent. However, one can certainly have an aqueous B-L acid or base!

Acids and Bases

Consider the reaction between NH_{3} and $\mathrm{H}_{2} \mathrm{O}$:

In the forward direction, water acts as the proton donor and NH_{3} the acceptor...
... in the reverse direction, $\mathrm{NH}_{4}{ }^{+}$is the proton donor and OH^{-} is the acceptor.

Acids and Bases

Identify each of the following species as a Bronsted acid, base, or both. (a) HI , (b) OH^{-}(c) $\mathrm{HPO}_{4}{ }^{2-}$

$$
\begin{aligned}
& \mathrm{HI}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{I}^{-}(a q) \\
& \mathrm{OH}^{-}(a q)+\mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q) \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

note that $\mathrm{HPO}_{4}{ }^{2-}$ can act as both an acid or a base! Such substances are said to be amphoteric.

Acids with only one ionizable H^{+}are said to be monoprotic acids

Acids with 2 ionizable H^{+}are said to be diprotic acids

Acids with 3 ionizable H^{+} are said to be triprotic acids.

Monoprotic acids

$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$ $\mathrm{HCN} \rightleftarrows \mathrm{H}^{+}+\mathrm{CN}^{-}$

Diprotic acids

$\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$
$\mathrm{HSO}_{4}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$

Triprotic acids

$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{HPO}_{4}{ }^{2-} \rightleftarrows \mathrm{H}^{+}+\mathrm{PO}_{4}{ }^{3-}$

Acids and Bases

Neutralization Reaction

A neutralization reaction is a special type of double displacement reaction in which an acid reacts with a hydroxide ion (base) to produce an ionic "salt" and water.

$$
\text { acid + base } \longrightarrow \text { salt + water }
$$

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}^{+}+\mathrm{St}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& \text { net ionic }=\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

note that the net ionic equation for all neutralization reactions will be $\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$!

Neutralization Reaction Examples:

$$
\begin{aligned}
& 2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \\
& \mathrm{HCN}(a q)+\mathrm{KOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KCN} \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathbf{N a O H}$ V $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

 Sodium Sulphate

You Try It

- Complete equation and balance formulas
- Balance equation.
- Name acid base and salt

Ex: $\quad \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{HOH}+\mathrm{K}_{2} \mathrm{SO}_{4}$

Ex: $\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3}$
$\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \longrightarrow \mathrm{HOH}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Hydrolysis

- Opposite reaction to neutralization

Salt + Water

Acid + Base

Parent Acid/Base

- If you know the salt involved you should be able to determine which acid and base it would form if water is added.

Salt + Water \longrightarrow Acid + Base Ex:
NaCl with water (HOH) would form HCl and NaOH

You Try It

- Name the "parent" acid and base that would be produced from these salts.
- Ex: Potassium chloride

Magnesium carbonate

Not all reactions involving acids and bases are neutralization reactions. For example, ammonia $\left(\mathrm{NH}_{3}\right)$, a Bronsted-Lowry base, can react with acids to form aqueous ammonium salts.

$$
\mathrm{HCl}(a q)+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(a q)
$$

Although this IS an acid base reaction, technically it is NOT a neutralization reaction: The aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ formed can react with the water present in the solution to produce $\mathrm{H}_{3} \mathrm{O}^{+}$:

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \text {回 sol'n is still acidic! }
$$

Other Reactions with Acids

Acids produce gases when they react with certain salts containing carbonate, bicarbonate, sulfite and sulfide ions. examples:
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{K}_{2} \mathrm{SO}_{3}+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow 2 \mathrm{KBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(g)$
$\mathrm{PbS}+2 \mathrm{HI}(\mathrm{aq}) \quad \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Note that the reaction with PbS and HI is a simple double displacement reaction. The others involve both double displacement AND decomposition!

ACID

Adds Hydrogen Ions

$$
\mathrm{H}^{+}
$$

Hydrochloric Acid

$$
\mathrm{HCl} \Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

BASE

Adds Hydroxyl Ions
OH^{-}

Sodium Hydroxide

$\mathrm{NaOH} \Rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Acid + Base =

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \quad \Longleftrightarrow \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{HCl}+\mathrm{NaOH} \Rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}+$ energy
acid + base \longrightarrow water + salt + heat NEUTRAL

Chemical

$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{\text {(1) }}$

Equation

1

$$
\mathrm{H}^{+} \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{Na}^{+} \mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Nap}^{+} \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$$
\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}\left(\mathrm{aq)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right.
$$

ACID-BASE TITRATION

Titration

Quantitative analysis that involves the gradual addition of a chemical solution from a burette to another chemical solution of known quantity in a conical flask.

End point

Is the point in the titration at which the indicatorchanges colour.

